HL Paper 1

Show that the points (0, 0) and $(\sqrt{2\pi}, -\sqrt{2\pi})$ on the curve $e^{(x+y)} = \cos(xy)$ have a common tangent.

Let
$$f(x) = \sqrt{rac{x}{1-x}}, \ 0 < x < 1.$$

a. Show that f'(x) = ¹/₂x^{-¹/₂}(1 − x)^{-³/₂} and deduce that f is an increasing function. [5]
b. Show that the curve y = f(x) has one point of inflexion, and find its coordinates. [6]
c. Use the substitution x = sin²θ to show that ∫ f(x)dx = arcsin √x − √x − x² + c. [11]

The first set of axes below shows the graph of y = f(x) for $-4 \le x \le 4$.

Let $g(x) = \int_{-4}^{x} f(t) dt$ for $-4 \le x \le 4$.

(a) State the value of x at which g(x) is a minimum.

(b) On the second set of axes, sketch the graph of y = g(x).

The function f is defined by $f(x) = e^{x^2 - 2x - 1.5}$.

(a) Find f'(x).

(b) You are given that $y = \frac{f(x)}{x-1}$ has a local minimum at x = a, a > 1. Find the

The following diagram shows the graph of $y=rac{\left(\ln x
ight)^2}{x},\ x>0.$

[1]

[5]

[7]

[5]

The region R is enclosed by the curve, the x-axis and the line x = e.

Let
$$I_n=\int_1^{ ext{e}}rac{(\ln x)^n}{x^2} ext{d} x,\ n\in\mathbb{N}.$$

- a. Given that the curve passes through the point (a, 0), state the value of a.
- b. Use the substitution $u = \ln x$ to find the area of the region R.
- c. (i) Find the value of I_0 .
 - (ii) Prove that $I_n=rac{1}{\mathrm{e}}+nI_{n-1},\ n\in\mathbb{Z}^+.$
 - (iii) Hence find the value of I_1 .

d. Find the volume of the solid formed when the region R is rotated through 2π about the *x*-axis.

Consider the functions $f, \; g,$ defined for $x \in \mathbb{R},$ given by $f(x) = \mathrm{e}^{-x} \sin x$ and $g(x) = \mathrm{e}^{-x} \cos x.$

a.i. Find $f'(x)$.	[2]
a.ii.Find $g'(x)$.	[1]
b. Hence, or otherwise, find $\int\limits_{0}^{\pi} \mathrm{e}^{-x} \sin x \mathrm{d}x.$	[4]

A drinking glass is modelled by rotating the graph of $y = e^x$ about the *y*-axis, for $1 \leqslant y \leqslant 5$. Find the volume of the glass.

A curve is defined by $xy=y^2+4.$

a.	Show that there is no point where the tangent to the curve is horizontal.	[4]
b.	Find the coordinates of the points where the tangent to the curve is vertical.	[4]

Consider the function defined by $f(x)=x\sqrt{1-x^2}$ on the domain $-1\leq x\leq 1.$

a.	Show that f is an odd function.	[2]
b.	Find $f'(x)$.	[3]
c.	Hence find the x -coordinates of any local maximum or minimum points.	[3]
d.	Find the range of f .	[3]
e.	Sketch the graph of $y = f(x)$ indicating clearly the coordinates of the x -intercepts and any local maximum or minimum points.	[3]
f.	Find the area of the region enclosed by the graph of $y=f(x)$ and the x -axis for $x\geq 0.$	[4]
g.	Show that $\int_{-1}^1 \left x\sqrt{1-x^2}\right \mathrm{d}x> \left \int_{-1}^1 x\sqrt{1-x^2}\mathrm{d}x\right .$	[2]

Let
$$y(x)=xe^{3x},\ x\in\mathbb{R}.$$

a.	Find $\frac{\mathrm{d}y}{\mathrm{d}x}$.	[2]
b.	Prove by induction that $rac{\mathrm{d}^n y}{\mathrm{d} x^n}=n3^{n-1}\mathrm{e}^{3x}+x3^n\mathrm{e}^{3x}$ for $n\in\mathbb{Z}^+.$	[7]
c.	Find the coordinates of any local maximum and minimum points on the graph of $y(x)$.	[5]
	Justify whether any such point is a maximum or a minimum.	
d.	Find the coordinates of any points of inflexion on the graph of $y(x)$. Justify whether any such point is a point of inflexion.	[5]
e.	Hence sketch the graph of $y(x)$, indicating clearly the points found in parts (c) and (d) and any intercepts with the axes.	[2]

By using the substitution $u=\mathrm{e}^x+3$, find $\int rac{\mathrm{e}^x}{\mathrm{e}^{2x}+\mathrm{6e}^x+13}\mathrm{d}x.$

Consider the function defined by $f(x) = x^3 - 3x^2 + 4$.

- a. Determine the values of x for which f(x) is a decreasing function.
- b. There is a point of inflexion, P, on the curve y = f(x).

Find the coordinates of *P*.

a. Show that $\sin\left(\theta + \frac{\pi}{2}\right) = \cos\theta$. [1]

[4]

[3]

[7]

b. Consider $f(x) = \sin(ax)$ where a is a constant. Prove by mathematical induction that $f^{(n)}(x) = a^n \sin\left(ax + \frac{n\pi}{2}\right)$ where $n \in \mathbb{Z}^+$ and [7] $f^{(n)}(x)$ represents the nth derivative of f(x).

- a. Find the value of the integral $\int_0^{\sqrt{2}} \sqrt{4 x^2} dx$.[7]b. Find the value of the integral $\int_0^{0.5} \arcsin x dx$.[5]
- c. Using the substitution $t = \tan \theta$, find the value of the integral

$$\int_0^{\frac{\pi}{4}} \frac{\mathrm{d}\theta}{3\mathrm{cos}^2\theta + \mathrm{sin}^2\theta}$$

The graph of the function $f(x) = rac{x+1}{x^2+1}$ is shown below.

The point (1, 1) is a point of inflexion. There are two other points of inflexion.

a.	Find $f'(x)$.	[2]
b.	Hence find the x -coordinates of the points where the gradient of the graph of f is zero.	[1]
c.	Find $f''(x)$ expressing your answer in the form $\frac{p(x)}{(x^2+1)^3}$, where $p(x)$ is a polynomial of degree 3.	[3]
d.	Find the <i>x</i> -coordinates of the other two points of inflexion.	[4]
e.	Find the area of the shaded region. Express your answer in the form $\frac{\pi}{a} - \ln \sqrt{b}$, where a and b are integers.	[6]

Consider the complex number $z = \cos \theta + i \sin \theta$.

The region S is bounded by the curve $y = \sin x \cos^2 x$ and the x-axis between x = 0 and $x = \frac{\pi}{2}$.

a. Use De Moivre's theorem to show that $z^n + z^{-n} = 2\cos n\theta, \ n \in \mathbb{Z}^+$.

b. Expand
$$(z + z^{-1})^4$$
. [1]

[2]

[3]

c.	Hence show that $\cos^4\theta = p\cos 4\theta + q\cos 2\theta + r$, where p, q and r are constants to be determined.	[4]
d.	Show that $\cos^6\theta = \frac{1}{32}\cos 6\theta + \frac{3}{16}\cos 4\theta + \frac{15}{32}\cos 2\theta + \frac{5}{16}$.	[3]

e. Hence find the value of $\int_0^{\frac{\pi}{2}} \cos^6\theta d\theta$.

f. S is rotated through 2π radians about the x-axis. Find the value of the volume generated. [4]

- g. (i) Write down an expression for the constant term in the expansion of $(z + z^{-1})^{2k}$, $k \in \mathbb{Z}^+$. [3]
 - (ii) Hence determine an expression for $\int_0^{\frac{\pi}{2}} \cos^{2k}\theta d\theta$ in terms of k.

The graphs of $f(x) = -x^2 + 2$ and $g(x) = x^3 - x^2 - bx + 2$, b > 0, intersect and create two closed regions. Show that these two regions have equal areas.

Consider the part of the curve $4x^2 + y^2 = 4$ shown in the diagram below.

- (a) Find an expression for $\frac{dy}{dx}$ in terms of x and y.
- (b) Find the gradient of the tangent at the point $\left(\frac{2}{\sqrt{5}}, \frac{2}{\sqrt{5}}\right)$.

(c) A bowl is formed by rotating this curve through 2π radians about the x-axis.

Calculate the volume of this bowl.

$$rac{\mathrm{d}y}{\mathrm{d}x}=rac{y}{\ln y}(x+2),\;y>1,$$

and y = e when x = 2.

a. Find the equation of the tangent to C at the point (2, e).	[3]
b. Find $f(x)$.	[11]
c. Determine the largest possible domain of <i>f</i> .	[6]

[4]

[4]

d. Show that the equation f(x) = f'(x) has no solution.

Find the area enclosed by the curve $y = \arctan x$, the x-axis and the line $x = \sqrt{3}$.

A curve has equation $3x - 2y^2 e^{x-1} = 2$.

- a. Find an expression for $\frac{dy}{dx}$ in terms of x and y. [5]
- b. Find the equations of the tangents to this curve at the points where the curve intersects the line x = 1.

A curve has equation $\arctan x^2 + \arctan y^2 = rac{\pi}{4}.$

- (a) Find $\frac{dy}{dx}$ in terms of x and y.
- (b) Find the gradient of the curve at the point where $x = \frac{1}{\sqrt{2}}$ and y < 0.

Let $x^3y = a\sin nx$. Using implicit differentiation, show that

$$x^3rac{\mathrm{d}^2y}{\mathrm{d}x^2}+6x^2rac{\mathrm{d}y}{\mathrm{d}x}+(n^2x^2+6)xy=0$$

Let $y = e^x \sin x$.

Consider the function f defined by $f(x)=\mathrm{e}^x\sin x,\ 0\leqslant x\leqslant \pi.$

a. Find an expression for $\frac{dy}{dx}$.	[2]

b. Show that
$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 2\mathrm{e}^x \cos x.$$
 [2]

[2]

[2]

[3]

[6]

[3]

- c. Show that the function f has a local maximum value when $x=rac{3\pi}{4}.$
- d. Find the x-coordinate of the point of inflexion of the graph of f.
- e. Sketch the graph of f, clearly indicating the position of the local maximum point, the point of inflexion and the axes intercepts.
- f. Find the area of the region enclosed by the graph of f and the x-axis.

The curvature at any point (x, y) on a graph is defined as $\kappa = rac{\left|rac{\mathrm{d}^2 y}{\mathrm{d} x^2}
ight|}{\left(1+\left(rac{\mathrm{d} y}{\mathrm{d} x}
ight)^2
ight)^{rac{3}{2}}}.$

- g. Find the value of the curvature of the graph of f at the local maximum point.
- h. Find the value κ for $x = \frac{\pi}{2}$ and comment on its meaning with respect to the shape of the graph. [2]

The diagram below shows a circular lake with centre O, diameter AB and radius 2 km.

Jorg needs to get from A to B as quickly as possible. He considers rowing to point P and then walking to point B. He can row at 3 km h^{-1} and walk at 6 km h^{-1} . Let $P\hat{A}B = \theta$ radians, and *t* be the time in hours taken by Jorg to travel from A to B.

a.	Show that $t = \frac{2}{3}(2\cos\theta + \theta)$.	[3]
b.	Find the value of θ for which $\frac{dt}{d\theta} = 0$.	[2]
c.	What route should Jorg take to travel from A to B in the least amount of time?	[3]

Give reasons for your answer.

a. Using the definition of a derivative as f'(x) = lim_{h→0} (f(x+h)-f(x)/h), show that the derivative of 1/(2x+1) is -2/((2x+1))². [4]
b. Prove by induction that the nth derivative of (2x + 1)⁻¹ is (-1)ⁿ 2ⁿn!/((2x+1))ⁿ⁺¹. [9]

Calculate the exact value of $\int_1^{\mathrm{e}} x^2 \ln x \mathrm{d} x$.

The function f is defined by

$$f(x)=\left\{egin{array}{cc} 1-2x, & x\leq 2\ rac{3}{4}(x-2)^2-3, & x>2 \end{array}
ight.$$

a. Determine whether or not *f* is continuous.

b. The graph of the function g is obtained by applying the following transformations to the graph of f: [4]

[2]

a reflection in the *y*-axis followed by a translation by the vector $\begin{pmatrix} 2 \\ 0 \end{pmatrix}$.

Find g(x).

The function f is defined, for $-rac{\pi}{2}\leqslant x\leqslant rac{\pi}{2}$, by $f(x)=2\cos x+x\sin x$.

a. De	etermine whether f is even, odd or neither even nor odd.	[3]
b. Sh	how that $f^{\prime\prime}(0)=0$.	[2]
• T.	$(\mathcal{M}(\alpha)) = 0$ the scale of t	[0]

c. John states that, because f''(0) = 0, the graph of f has a point of inflexion at the point (0, 2). Explain briefly whether John's statement is [2] correct or not.

A window is made in the shape of a rectangle with a semicircle of radius *r* metres on top, as shown in the diagram. The perimeter of the window is a constant P metres.

a.i. Find the area of the window in terms of P and r .	[4]
a.ii.Find the width of the window in terms of P when the area is a maximum, justifying that this is a maximum.	[5]
b. Show that in this case the height of the rectangle is equal to the radius of the semicircle.	[2]

A tranquilizer is injected into a muscle from which it enters the bloodstream.

The concentration C in mgl^{-1} , of tranquilizer in the bloodstream can be modelled by the function $C(t) = \frac{2t}{3+t^2}$, $t \ge 0$ where t is the number of minutes after the injection.

Find the maximum concentration of tranquilizer in the bloodstream.

a. Show that $\cotlpha= an\Bigl(rac{\pi}{2}-lpha\Bigr)$ for 0	[1]
b. Hence find $\int_{ an lpha}^{\cot lpha} rac{1}{1+x^2} \mathrm{d}x, \; 0 < lpha < rac{\pi}{2}.$	[4]

Given that
$$\int_{-2}^{2} f(x) \, \mathrm{d}x = 10$$
 and $\int_{0}^{2} f(x) \, \mathrm{d}x = 12$, find

a. $\int_{-2}^{0} \left(f(x) + 2 \right) \mathrm{d}x.$

b. $\int_{-2}^{0} f(x+2) \, \mathrm{d}x.$

[4]

[2]

By using the substitution $t = \tan x$, find $\int rac{\mathrm{d}x}{1+\sin^2 x}$.

Express your answer in the form $m \arctan(n \tan x) + c$, where m, n are constants to be determined.

Find the equation of the normal to the curve $5xy^2 - 2x^2 = 18$ at the point (1, 2).

Consider the function $f(x) = \frac{\ln x}{x}, \ x > 0.$

The sketch below shows the graph of y = f(x) and its tangent at a point A.

[5]

c. Find the coordinates of C, the point of inflexion on the curve.

d.	The graph of $y = f(x)$ crosses the x-axis at the point A.	[4]
	Find the equation of the tangent to the graph of f at the point A.	
e.	The graph of $y = f(x)$ crosses the x-axis at the point A.	[7]

Find the area enclosed by the curve y = f(x), the tangent at A, and the line x = e.

The region enclosed between the curves $y = \sqrt{x}e^x$ and $y = e\sqrt{x}$ is rotated through 2π about the x-axis. Find the volume of the solid obtained.

The curve *C* is given by $y = \frac{x \cos x}{x + \cos x}$, for $x \ge 0$.

a. Show that $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\cos^2 x - x^2 \sin x}{\left(x + \cos x\right)^2}, \; x \geqslant 0.$	[4]
b. Find the equation of the tangent to C at the point $\left(\frac{\pi}{2}, 0\right)$.	[3]

a. Find $\int (1 + \tan^2 x) dx$.

b. Find $\int \sin^2 x dx$.

[2] [3]

[2]

[5]

[5]

[2]

By using the substitution $u=1+\sqrt{x}$, find $\int rac{\sqrt{x}}{1+\sqrt{x}}\mathrm{d}x.$

Let $y = \sin^2 \theta, \ 0 \leqslant \theta \leqslant \pi.$

a. Find
$$\frac{dy}{d\theta}$$

b. Hence find the values of heta for which $rac{\mathrm{d}y}{\mathrm{d} heta}=2y.$

A particle moves along a straight line. Its displacement, s metres, at time t seconds is given by $s = t + \cos 2t$, $t \ge 0$. The first two times when the particle is at rest are denoted by t_1 and t_2 , where $t_1 < t_2$.

a. Find t_1 and t_2 .

b. Find the displacement of the particle when $t=t_1$

a. Using the substitution
$$x = \tan \theta$$
 show that $\int_{0}^{1} \frac{1}{(x^{2}+1)^{2}} dx = \int_{0}^{\frac{\pi}{4}} \cos^{2}\theta d\theta$. [4]
b. Hence find the value of $\int_{0}^{1} \frac{1}{(x^{2}+1)^{2}} dx$. [3]

Use the substitution $u=\ln x$ to find the value of $\int_{\mathrm{e}}^{\mathrm{e}^2} rac{\mathrm{d}x}{x\ln x}.$

a.	Use the identity $\cos 2\theta = 2\cos^2 \theta - 1$ to prove that $\cos \frac{1}{2}x = \sqrt{\frac{1+\cos x}{2}}, \ 0 \le x \le \pi$.	[2]

b. Find a similar expression for $\sin \frac{1}{2}x$, $0 \le x \le \pi$.

c. Hence find the value of
$$\int_0^{\frac{\pi}{2}} \left(\sqrt{1 + \cos x} + \sqrt{1 - \cos x}\right) dx.$$
 [4]

Paint is poured into a tray where it forms a circular pool with a uniform thickness of 0.5 cm. If the paint is poured at a constant rate of $4 \text{ cm}^3 \text{s}^{-1}$, find the rate of increase of the radius of the circle when the radius is 20 cm.

Consider two functions f and g and their derivatives f' and g'. The following table shows the values for the two functions and their derivatives at x = 1, 2 and 3.

x	1	2	3
f(x)	3	1	1
f'(x)	1	4	2
g(x)	2	1	4
g'(x)	4	2	3

Given that p(x)=f(x)g(x) and $h(x)=g\circ f(x)$, find

a. p'(3);

b. h'(2).

[2]

[2]

[4]

The region bounded by the curve $y = \frac{\ln(x)}{x}$ and the lines x = 1, x = e, y = 0 is rotated through 2π radians about the *x*-axis. Find the volume of the solid generated.

Consider the curve $y=rac{1}{1-x},\ x\in\mathbb{R},\ x
eq 1.$

a. Find $\frac{\mathrm{d}y}{\mathrm{d}x}$.

b. Determine the equation of the normal to the curve at the point x=3 in the form ax+by+c=0 where $a,\ b,\ c\in\mathbb{Z}.$

[4]

[2]

The function f is given by $f(x) = xe^{-x}$ $(x \ge 0)$.

a(i))((i)) Find an expression for $f'(x)$.	[3]
	(ii) Hence determine the coordinates of the point A, where $f'(x) = 0$.	
b.	Find an expression for $f''(x)$ and hence show the point A is a maximum.	[3]
c.	Find the coordinates of B, the point of inflexion.	[2]
d.	The graph of the function g is obtained from the graph of f by stretching it in the x-direction by a scale factor 2.	[5]
	(i) Write down an expression for $g(x)$.	
	(ii) State the coordinates of the maximum C of g.	
	(iii) Determine the x-coordinates of D and E, the two points where $f(x) = g(x)$.	
e.	Sketch the graphs of $y = f(x)$ and $y = g(x)$ on the same axes, showing clearly the points A, B, C, D and E.	[4]
f.	Find an exact value for the area of the region bounded by the curve $y = g(x)$, the x-axis and the line $x = 1$.	[3]

If
$$f(x) = x - 3x^{rac{2}{3}}, \ x > 0$$
 ,

- (a) find the x-coordinate of the point P where f'(x) = 0;
- (b) determine whether P is a maximum or minimum point.

The normal to the curve $xe^{-y} + e^y = 1 + x$, at the point (c, ln c), has a y-intercept $c^2 + 1$.

Determine the value of *c*.

The curve *C* is given implicitly by the equation $\frac{x^2}{y} - 2x = \ln y$ for y > 0.

a.	Express $\frac{dy}{dx}$ in terms of x and y.	[4]
b.	Find the value of $\frac{dy}{dx}$ at the point on C where $y = 1$ and $x > 0$.	[2]

The diagram shows the graph of the function defined by $y=x(\ln x)^2$ for x>0 .

The function has a local maximum at the point A and a local minimum at the point B.

a.	Find the coordinates of the points A and B.	[5]
b.	Given that the graph of the function has exactly one point of inflexion, find its coordinates.	[3]

Consider the following functions:

 $egin{aligned} h(x) &= rctan(x), \; x \in \mathbb{R} \ g(x) &= rac{1}{x}, \, x \in \mathbb{R}, \; x
eq 0 \end{aligned}$

a.	Sketch the graph of $y = h(x)$.	[2]
b.	Find an expression for the composite function $h \circ g(x)$ and state its domain.	[2]
с.	Given that $f(x) = h(x) + h \circ g(x)$,	[7]
	i) find $f'(x)$ in simplified form; ii) show that $f(x) = \frac{\pi}{2}$ for $x > 0$.	
d.	Nigel states that f is an odd function and Tom argues that f is an even function.	[3]
	i) State who is correct and justify your answer.	
	ii) Hence find the value of $f(x)$ for $x < 0$.	

The function f is defined by $f(x) = e^x \sin x$.

a.	Show that $f''(x) = 2\mathrm{e}^x \sin \left(x + rac{\pi}{2} ight)$.	[3]
b.	Obtain a similar expression for $f^{(4)}(x)$.	[4]

[8]

c. Suggest an expression for $f^{(2n)}(x), n \in \mathbb{Z}^+$, and prove your conjecture using mathematical induction.

The function f is defined by $f(x) = x e^{2x}$.

It can be shown that $f^{(n)}(x) = (2^n x + n2^{n-1})e^{2x}$ for all $n \in \mathbb{Z}^+$, where $f^{(n)}(x)$ represents the $n^{ ext{th}}$ derivative of f(x).

- (a) By considering $f^{(n)}(x)$ for n = 1 and n = 2, show that there is one minimum point P on the graph of f, and find the coordinates of P.
- (b) Show that *f* has a point of inflexion Q at x = -1.
- (c) Determine the intervals on the domain of f where f is
- (i) concave up;
- (ii) concave down.
- (d) Sketch f, clearly showing any intercepts, asymptotes and the points P and Q.
- (e) Use mathematical induction to prove that $f^{(n)}(x) = (2^n x + n2^{n-1})e^{2x}$ for all $n \in \mathbb{Z}^+$, where $f^{(n)}$ represents the n^{th} derivative of f(x).

Consider the function $f_n(x) = (\cos 2x)(\cos 4x)\dots(\cos 2^n x), \ n \in \mathbb{Z}^+.$

a. Determine whether f_n is an odd or even function, justifying your answer.

b. By using mathematical induction, prove that

$$f_n(x)=rac{\sin 2^{n+1}x}{2^n\sin 2x},\ x
eq rac{m\pi}{2}$$
 where $m\in\mathbb{Z}.$

[2]

[8]

[3]

- c. Hence or otherwise, find an expression for the derivative of $f_n(x)$ with respect to x.
- d. Show that, for n > 1, the equation of the tangent to the curve $y = f_n(x)$ at $x = \frac{\pi}{4}$ is $4x 2y \pi = 0$. [8]

Consider the functions $f(x)= an x,\ 0\leq\ x<rac{\pi}{2}$ and $g(x)=rac{x+1}{x-1},\ x\in\mathbb{R},\ x
eq 1.$

- a. Find an expression for $g \circ f(x)$, stating its domain. [2]
- b. Hence show that $g \circ f(x) = \frac{\sin x + \cos x}{\sin x \cos x}$. [2]

c. Let $y = g \circ f(x)$, find an exact value for $\frac{dy}{dx}$ at the point on the graph of $y = g \circ f(x)$ where $x = \frac{\pi}{6}$, expressing your answer in the form [6] $a + b\sqrt{3}$, $a, b \in \mathbb{Z}$.

d. Show that the area bounded by the graph of $y = g \circ f(x)$, the x-axis and the lines x = 0 and $x = rac{\pi}{6}$ is $\ln\left(1 + \sqrt{3}\right)$. [6]

Find $\int \arcsin x \, \mathrm{d}x$

Show that $\int_{0}^{\frac{\pi}{6}} x \sin 2x dx = \frac{\sqrt{3}}{8} - \frac{\pi}{24}$.

A function f is defined by $f(x)=rac{3x-2}{2x-1},\;x\in\mathbb{R},\;x
eqrac{1}{2}.$

a. Find an expression for
$$f^{-1}(x)$$
. [4]

b. Given that f(x) can be written in the form $f(x) = A + rac{B}{2x-1}$, find the values of the constants A and B.

c. Hence, write down $\int \frac{3x-2}{2x-1} dx$. [1]

The function f is defined as $f(x) = ax^2 + bx + c$ where $a, \ b, \ c \in \mathbb{R}.$

Hayley conjectures that
$$rac{f(x_2)-f(x_1)}{x_2-x_1}=rac{f'(x_2)+f'(x_1)}{2},\ x1
eq x2.$$

Show that Hayley's conjecture is correct.

Find the *x*-coordinates of all the points on the curve $y = 2x^4 + 6x^3 + \frac{7}{2}x^2 - 5x + \frac{3}{2}$ at which the tangent to the curve is parallel to the tangent at (-1, 6).

Consider the curve $y=rac{1}{1-x}+rac{4}{x-4}.$

Find the *x*-coordinates of the points on the curve where the gradient is zero.

Use the substitution $x = a \sec \theta$ to show that $\int_{a\sqrt{2}}^{2a} \frac{\mathrm{d}x}{x^3\sqrt{x^2-a^2}} = \frac{1}{24a^3} \left(3\sqrt{3} + \pi - 6\right).$

a. Calculate
$$\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{\sec^2 x}{\sqrt[3]{\tan x}} dx$$

b. Find $\int \tan^3 x dx$.

[6] [3]

[2]

Find the value of $\int_0^1 t \ln(t+1) dt$.

Let
$$y = \arccos\left(rac{x}{2}
ight)$$

a. Find
$$\frac{dy}{dx}$$
.[2]b. Find $\int_0^1 \arccos\left(\frac{x}{2}\right) dx$.[7]

Consider the function $f(x)=rac{1}{x^2+3x+2},\ x\in\mathbb{R},\ x
eq-2,\ x
eq-1.$

a.i. Express
$$x^2 + 3x + 2$$
 in the form $(x + h)^2 + k$. [1]

a.ii.Factorize
$$x^2 + 3x + 2$$
. [1]

b. Sketch the graph of f(x), indicating on it the equations of the asymptotes, the coordinates of the y-intercept and the local maximum. [5]

c. Show that
$$\frac{1}{x+1} - \frac{1}{x+2} = \frac{1}{x^2+3x+2}$$
. [1]

d. Hence find the value of
$$p$$
 if $\int_0^1 f(x) dx = \ln(p)$. [4]

e. Sketch the graph of
$$y = f(|x|)$$
. [2]

f. Determine the area of the region enclosed between the graph of y = f(|x|), the x-axis and the lines with equations x = -1 and x = 1. [3]

A particle moves in a straight line such that at time t seconds $(t \ge 0)$, its velocity v, in ms⁻¹, is given by $v = 10te^{-2t}$. Find the exact distance travelled by the particle in the first half-second.

(a) Show that $\frac{3}{x+1} + \frac{2}{x+3} = \frac{5x+11}{x^2+4x+3}$.

- (b) Hence find the value of k such that $\int_0^2 \frac{5x+11}{x^2+4x+3} dx = \ln k$.
- a. Use the substitution $u=x^{rac{1}{2}}$ to find $\int rac{\mathrm{d}x}{x^{rac{3}{2}+x^{rac{1}{2}}}.$

b. Hence find the value of $\frac{1}{2} \int_{1}^{9} \frac{dx}{x^{\frac{3}{2}} + x^{\frac{1}{2}}}$, expressing your answer in the form $\arctan q$, where $q \in \mathbb{Q}$.

[4]

[3]

a.	Find all values of x for $0.1 \le x \le 1$ such that $\sin(\pi x^{-1}) = 0$.	[2]
b.	Find $\int_{\frac{1}{n+1}}^{\frac{1}{n}} \pi x^{-2} \sin(\pi x^{-1}) dx$, showing that it takes different integer values when <i>n</i> is even and when <i>n</i> is odd.	[3]
c.	Evaluate $\int_{0.1}^{1} \pi x^{-2} \sin(\pi x^{-1}) \mathrm{d}x.$	[2]

The folium of Descartes is a curve defined by the equation $x^3 + y^3 - 3xy = 0$, shown in the following diagram.

Determine the exact coordinates of the point P on the curve where the tangent line is parallel to the y-axis.

A body is moving in a straight line. When it is *s* metres from a fixed point O on the line its velocity, *v*, is given by $v = -\frac{1}{s^2}$, s > 0. Find the acceleration of the body when it is 50 cm from O.

Consider the curve $y = x e^x$ and the line $y = kx, \ k \in \mathbb{R}$.

(a) Let k = 0.

- (i) Show that the curve and the line intersect once.
- (ii) Find the angle between the tangent to the curve and the line at the point of intersection.
- (b) Let k = 1. Show that the line is a tangent to the curve.
- (c) (i) Find the values of k for which the curve $y = xe^x$ and the line y = kx meet in two distinct points.
- (ii) Write down the coordinates of the points of intersection.
- (iii) Write down an integral representing the area of the region A enclosed by the curve and the line.
- (iv) Hence, given that 0 < k < 1, show that A < 1.

The following graph shows the relation $x=3\cos 2y+4,\ 0\leqslant y\leqslant \pi.$

The curve is rotated 360° about the y-axis to form a volume of revolution.

A container with this shape is made with a solid base of diameter 14 cm . The container is filled with water at a rate of $2 \text{ cm}^3 \text{ min}^{-1}$. At time t minutes, the water depth is h cm, $0 \le h \le \pi$ and the volume of water in the container is $V \text{ cm}^3$.

a. Calculate the value of the volume generated.	[8]
---	-----

b. (i) Given that
$$\frac{dV}{dh} = \pi (3\cos 2h + 4)^2$$
, find an expression for $\frac{dh}{dt}$. [4]

(ii) Find the value of
$$rac{\mathrm{d}h}{\mathrm{d}t}$$
 when $h=rac{\pi}{4}.$

[7]

c. (i) Find
$$\frac{\mathrm{d}^2 h}{\mathrm{d}t^2}$$
.

(ii) Find the values of
$$h$$
 for which $\frac{\mathrm{d}^2 h}{\mathrm{d} t^2} = 0$

(iii) By making specific reference to the shape of the container, interpret $\frac{dh}{dt}$ at the values of h found in part (c)(ii).

The curve C has equation $y=rac{1}{8}(9+8x^2-x^4)$.

a.	Find the coordinates of the points on C at which $\frac{dy}{dx} = 0$.	[4]
b.	The tangent to C at the point $P(1, 2)$ cuts the x-axis at the point T. Determine the coordinates of T.	[4]
c.	The normal to C at the point P cuts the y-axis at the point N. Find the area of triangle PTN.	[7]

The function f is defined by

$$f(x)=egin{cases} 2x-1, & x\leqslant 2\ ax^2+bx-5, & 2< x< 3 \end{cases}$$

where a , $b \in \mathbb{R}$.

a.	Given that f and its derivative, f' , are continuous for all values in the domain of f, find the values of a and b.	[6]
b.	Show that f is a one-to-one function.	[3]
c.	Obtain expressions for the inverse function f^{-1} and state their domains.	[5]

A curve is given by the equation $y = \sin(\pi \cos x)$.

Find the coordinates of all the points on the curve for which $rac{\mathrm{d} y}{\mathrm{d} x}=0, \; 0\leqslant x\leqslant \pi.$

It is given that $\log_2 y + \log_4 x + \log_4 2x = 0.$

a. Show that
$$\log_{r^2} x = rac{1}{2} \log_r x$$
 where $r, \, x \in \mathbb{R}^+.$ [2]

[5]

b. Express y in terms of x. Give your answer in the form $y = px^q$, where p, q are constants.

c. The region *R*, is bounded by the graph of the function found in part (b), the *x*-axis, and the lines x = 1 and $x = \alpha$ where $\alpha > 1$. The area of *R* [5] is $\sqrt{2}$.

Find the value of α .

Given that $y = \frac{1}{1-x}$, use mathematical induction to prove that $\frac{\mathrm{d}^n y}{\mathrm{d}x^n} = \frac{n!}{(1-x)^{n+1}}$, $n \in \mathbb{Z}^+$.

A curve is defined by the equation $8y \ln x - 2x^2 + 4y^2 = 7$. Find the equation of the tangent to the curve at the point where x = 1 and y > 0.

Consider the curve with equation $x^2 + xy + y^2 = 3$.

- (a) Find in terms of k, the gradient of the curve at the point (-1, k).
- (b) Given that the tangent to the curve is parallel to the *x*-axis at this point, find the value of *k*.

a. Find the gradient of the tangent to the curve at the point (π, π) .

b. Hence, show that $\tan \theta = \frac{1}{1+2\pi}$, where θ is the acute angle between the tangent to the curve at (π, π) and the line y = x.

Consider the function f defined by $f(x) = x^2 - a^2, x \in \mathbb{R}$ where a is a positive constant.

The function g is defined by $g(x) = x \sqrt{f(x)}$ for |x| > a.

a.i. Showing any x and y intercepts, any maximum or minimum points and any asymptotes, sketch the following curves on separate axes. [2]

$$y = f(x);$$

a.ii.Showing any x and y intercepts, any maximum or minimum points and any asymptotes, sketch the following curves on separate axes. [4]

$$y=rac{1}{f(x)};$$

a.iiiShowing any x and y intercepts, any maximum or minimum points and any asymptotes, sketch the following curves on separate axes. [2]

$$y=\Big|rac{1}{f(x)}\Big|.$$

b. Find $\int f(x) \cos x dx$.

c. By finding g'(x) explain why g is an increasing function.

In triangle ABC, $BC = \sqrt{3}$ cm, $A\hat{B}C = \theta$ and $B\hat{C}A = \frac{\pi}{3}$.

a. Show that length
$$AB = \frac{3}{\sqrt{3}\cos\theta + \sin\theta}$$
. [4]

b. Given that AB has a minimum value, determine the value of θ for which this occurs.

Consider the functions f and g defined by $f(x)=2^{rac{1}{x}}$ and $g(x)=4-2^{rac{1}{x}}$, x
eq 0 .

- (a) Find the coordinates of P, the point of intersection of the graphs of f and g.
- (b) Find the equation of the tangent to the graph of f at the point P.

The curve C has equation $2x^2 + y^2 = 18$. Determine the coordinates of the four points on C at which the normal passes through the point (1, 0).

[5]

[4]

[4]

Find the area between the curves $y = 2 + x - x^2$ and $y = 2 - 3x + x^2$.

Show that $\int_1^2 x^3 \ln x \mathrm{d}x = 4\ln 2 - rac{15}{16}.$

Find the exact value of $\int_1^2 \left((x-2)^2 + \frac{1}{x} + \sin \pi x \right) dx$.

André wants to get from point A located in the sea to point Y located on a straight stretch of beach. P is the point on the beach nearest to A such that AP = 2 km and PY = 2 km. He does this by swimming in a straight line to a point Q located on the beach and then running to Y.

When André swims he covers 1 km in $5\sqrt{5}$ minutes. When he runs he covers 1 km in 5 minutes.

(a) If PQ = x km, $0 \le x \le 2$, find an expression for the time *T* minutes taken by André to reach point Y.

(b) Show that
$$\frac{\mathrm{d}T}{\mathrm{d}x} = \frac{5\sqrt{5x}}{\sqrt{x^2+4}} - 5$$

(c) (i) Solve
$$\frac{\mathrm{d}T}{\mathrm{d}\pi} = 0$$
.

- (ii) Use the value of x found in **part (c) (i)** to determine the time, T minutes, taken for André to reach point Y.
- (iii) Show that $\frac{d^2T}{dx^2} = \frac{20\sqrt{5}}{(x^2+4)^{\frac{3}{2}}}$ and hence show that the time found in part (c) (ii) is a minimum.

(a) Given that $\alpha > 1$, use the substitution $u = \frac{1}{x}$ to show that

$$\int_1^lpha rac{1}{1+x^2}\mathrm{d}x = \int_{rac{1}{lpha}}^1 rac{1}{1+u^2}\mathrm{d}x.$$

(b) Hence show that $\arctan \alpha + \arctan \frac{1}{\alpha} = \frac{\pi}{2}$.

The quadratic function $f(x) = p + qx - x^2$ has a maximum value of 5 when x = 3.

- a. Find the value of p and the value of q.
- b. The graph of f(x) is translated 3 units in the positive direction parallel to the x-axis. Determine the equation of the new graph.
- a. A particle P moves in a straight line with displacement relative to origin given by

 $s=2\sin(\pi t)+\sin(2\pi t),\ t\geqslant 0,$

where *t* is the time in seconds and the displacement is measured in centimetres.

- (i) Write down the period of the function *s*.
- (ii) Find expressions for the velocity, v, and the acceleration, a, of P.
- (iii) Determine all the solutions of the equation v = 0 for $0 \le t \le 4$.
- b. Consider the function

$$f(x)=A\sin(ax)+B\sin(bx),\;A,\;a,\;B,\;b,\;x\in\mathbb{R}.$$

Use mathematical induction to prove that the $(2n)^{\text{th}}$ derivative of f is given by $(f^{(2n)}(x) = (-1)^n (Aa^{2n} \sin(ax) + Bb^{2n} \sin(bx))$, for all $n \in \mathbb{Z}^+$.

The graph below shows the two curves $y = \frac{1}{x}$ and $y = \frac{k}{x}$, where k > 1.

 $y = \frac{k}{x}$

В

1

√6

A

 $y = \frac{1}{x}$

 $\frac{1}{6}$

diagram not to scale [10]

[8]

Let
$$f\left(x
ight)=rac{2-3x^{5}}{2x^{3}},\,\,x\in\mathbb{R},\,\,x
eq0.$$

a. The graph of $y=f\left(x ight)$ has a local maximum at A. Find the coordinates of A.	[5]
b.i.Show that there is exactly one point of inflexion, B, on the graph of $y=f\left(x ight).$	[5]
b.ii.The coordinates of B can be expressed in the form B $(2^a,b imes 2^{-3a})$ where $a,b\in\mathbb{Q}.$ Find the value of a and the value of $b.$	[3]
c. Sketch the graph of $y = f(x)$ showing clearly the position of the points A and B.	[4]

A normal to the graph of $y = \arctan(x-1)$, for x>0 , has equation y=-2x+c , where $x\in\mathbb{R}$.

Find the value of *c*.

The function f is defined by $f(x) = \frac{2x-1}{x+2}$, with domain $D = \{x : -1 \leqslant x \leqslant 8\}$.

 b. Hence show that f'(x) > 0 on D. c. State the range of f. d. (i) Find an expression for f⁻¹(x). (ii) Sketch the graph of y = f(x), showing the points of intersection with both axes. (iii) On the same diagram, sketch the graph of y = f'(x). e. (i) On a different diagram, sketch the graph of y = f(x) where x ∈ D. 	a.	Expr	tress $f(x)$ in the form $A + \frac{B}{x+2}$, where A and $B \in \mathbb{Z}$.	[2]
 c. State the range of f. d. (i) Find an expression for f⁻¹(x). (ii) Sketch the graph of y = f(x), showing the points of intersection with both axes. (iii) On the same diagram, sketch the graph of y = f'(x). e. (i) On a different diagram, sketch the graph of y = f(x) where x ∈ D. 	b.	D. Hence show that $f'(x) > 0$ on D .		
 d. (i) Find an expression for f⁻¹(x). (ii) Sketch the graph of y = f(x), showing the points of intersection with both axes. (iii) On the same diagram, sketch the graph of y = f'(x). e. (i) On a different diagram, sketch the graph of y = f(x) where x ∈ D. 	c.	State the range of <i>f</i> .		
 (ii) Sketch the graph of y = f(x), showing the points of intersection with both axes. (iii) On the same diagram, sketch the graph of y = f'(x). e. (i) On a different diagram, sketch the graph of y = f(x) where x ∈ D. [7] 	d.	(i)	Find an expression for $f^{-1}(x)$.	[8]
(iii) On the same diagram, sketch the graph of $y = f'(x)$. e. (i) On a different diagram, sketch the graph of $y = f(x)$ where $x \in D$. [7]		(ii)	Sketch the graph of $y = f(x)$, showing the points of intersection with both axes.	
e. (i) On a different diagram, sketch the graph of $y = f(x)$ where $x \in D$. [7]		(iii)	On the same diagram, sketch the graph of $y = f'(x)$.	
	e.	(i)	On a different diagram, sketch the graph of $y = f(x)$ where $x \in D$.	[7]

(ii) Find all solutions of the equation $f(|x|) = -\frac{1}{4}$.

At 12:00 a boat is 20 km due south of a freighter. The boat is travelling due east at 20 km h⁻¹, and the freighter is travelling due south at 40 km h^{-1} .

a. Determine the time at which the two ships are closest to one another, and justify your answer.
b. If the visibility at sea is 9 km, determine whether or not the captains of the two ships can ever see each other's ship.

- a. Express $4x^2 4x + 5$ in the form $a(x h)^2 + k$ where $a, h, k \in \mathbb{Q}$.
- b. The graph of $y = x^2$ is transformed onto the graph of $y = 4x^2 4x + 5$. Describe a sequence of transformations that does this, making the [3] order of transformations clear.
- c. Sketch the graph of y = f(x). [2]
- d. Find the range of *f*.
- e. By using a suitable substitution show that $\int f(x) dx = \frac{1}{4} \int \frac{1}{u^2 + 1} du$.
- f. Prove that $\int_{1}^{3.5} \frac{1}{4x^2 4x + 5} dx = \frac{\pi}{16}$.

A curve has equation $x^3y^2 + x^3 - y^3 + 9y = 0$. Find the coordinates of the three points on the curve where $\frac{dy}{dx} = 0$.

A packaging company makes boxes for chocolates. An example of a box is shown below. This box is closed and the top and bottom of the box are identical regular hexagons of side *x* cm.

(a) Show that the area of each hexagon is $\frac{3\sqrt{3}x^2}{2}$ cm².

(b) Given that the volume of the box is 90 cm², show that when $x = \sqrt[3]{20}$ the total surface area of the box is a minimum, justifying that this value gives a minimum.

The function f is defined on the domain $\left[0, \, rac{3\pi}{2}
ight]$ by $f(x) = e^{-x}\cos x$.

- a. State the two zeros of f.
- b. Sketch the graph of f.

c. The region bounded by the graph, the x-axis and the y-axis is denoted by A and the region bounded by the graph and the x-axis is denoted by [7]

B. Show that the ratio of the area of A to the area of B is

$$\frac{e^{\pi}\left(e^{\frac{\pi}{2}}+1\right)}{e^{\pi}+1}.$$

[1] [1]

[2]

[2]

[3]

[7]

The function f is defined on the domain $x \ge 0$ by $f(x) = \mathrm{e}^x - x^\mathrm{e}$.

a.	(i)	Find an expression for $f'(x)$.	[3]
	(ii)	Given that the equation $f'(x) = 0$ has two roots, state their values.	
b.	Sket	ch the graph of f , showing clearly the coordinates of the maximum and minimum.	[3]
c.	Henc	be show that $\mathrm{e}^{\pi} > \pi^{\mathrm{e}}$.	[1]

The function f is defined as $f(x)=\mathrm{e}^{3x+1},\ x\in\mathbb{R}.$

State the domain of f^{-1} .

(ii)

a. (i) Find
$$f^{-1}(x)$$
. [4]

[5]

[3]

[5]

[6]

b. The function g is defined as $g(x) = \ln x, \; x \in \mathbb{R}^+.$

The graph of y = g(x) and the graph of $y = f^{-1}(x)$ intersect at the point P. Find the coordinates of P.

c. The graph of y=g(x) intersects the x-axis at the point Q.

Show that the equation of the tangent T to the graph of y = g(x) at the point Q is y = x - 1.

d. A region R is bounded by the graphs of y = g(x), the tangent T and the line $x = {
m e}.$

Find the area of the region R.

- e. A region R is bounded by the graphs of y = g(x), the tangent T and the line x = e.
 - (i) Show that $g(x) \leq x-1, \; x \in \mathbb{R}^+.$
 - (ii) By replacing x with $rac{1}{x}$ in part (e)(i), show that $rac{x-1}{x} \leq g(x), \; x \in \mathbb{R}^+.$

A function is defined as $f(x)=k\sqrt{x},$ with k>0 and $x\geqslant 0$.

- (a) Sketch the graph of y = f(x).
- (b) Show that f is a one-to-one function.
- (c) Find the inverse function, $f^{-1}(x)$ and state its domain.
- (d) If the graphs of y = f(x) and $y = f^{-1}(x)$ intersect at the point (4, 4) find the value of k.
- (e) Consider the graphs of y = f(x) and $y = f^{-1}(x)$ using the value of k found in part (d).
 - (i) Find the area enclosed by the two graphs.

(ii) The line x = c cuts the graphs of y = f(x) and $y = f^{-1}(x)$ at the points P and Q respectively. Given that the tangent to y = f(x) at point P is parallel to the tangent to $y = f^{-1}(x)$ at point Q find the value of c.

(a) Let a > 0. Draw the graph of $y = \left| x - \frac{a}{2} \right|$ for $-a \leqslant x \leqslant a$ on the grid below.

(b) Find k such that $\int_{-a}^{0} \left| x - \frac{a}{2} \right| dx = k \int_{0}^{a} \left| x - \frac{a}{2} \right| dx$.

Given that $f(x) = 1 + \sin x, \ 0 \leqslant x \leqslant rac{3\pi}{2},$

a. sketch the graph of f;

[1]

b. show that $(f(x))^2 = \frac{3}{2} + 2\sin x - \frac{1}{2}\cos 2x;$

c. find the volume of the solid formed when the graph of f is rotated through 2π radians about the x-axis.

Consider the function $f(x) = rac{\ln x}{x}$, $0 < x < \mathrm{e}^2$.

a. (i)	Solve the equation $f'(x) = 0$.	[5]
a. (I)	Solve the equation $f(x) = 0$.	[5]

- (ii) Hence show the graph of f has a local maximum.
- (iii) Write down the range of the function f.
- b. Show that there is a point of inflexion on the graph and determine its coordinates.
- c. Sketch the graph of y = f(x), indicating clearly the asymptote, x-intercept and the local maximum.

d. Now consider the functions
$$g(x) = \frac{\ln|x|}{x}$$
 and $h(x) = \frac{\ln|x|}{|x|}$, where $0 < x < e^2$. [6]

- (i) Sketch the graph of y = g(x).
- (ii) Write down the range of g.
- (iii) Find the values of x such that h(x) > g(x).

A tangent to the graph of $y = \ln x$ passes through the origin.

- (a) Sketch the graphs of $y = \ln x$ and the tangent on the same set of axes, and hence find the equation of the tangent.
- (b) Use your sketch to explain why $\ln x \leqslant rac{x}{\mathrm{e}}$ for x > 0.
- (c) Show that $x^{\mathrm{e}} \leqslant \mathrm{e}^x$ for x > 0 .
- (d) Determine which is larger, π^{e} or e^{π} .

The diagram below shows a sketch of the gradient function f'(x) of the curve f(x).

[5]

[3]

On the graph below, sketch the curve y = f(x) given that f(0) = 0. Clearly indicate on the graph any maximum, minimum or inflexion points.

Consider $f(x) = \frac{x^2 - 5x + 4}{x^2 + 5x + 4}$.

- (a) Find the equations of all asymptotes of the graph of *f*.
- (b) Find the coordinates of the points where the graph of f meets the x and y axes.
- (c) Find the coordinates of
- (i) the maximum point and justify your answer;
- (ii) the minimum point and justify your answer.
- (d) Sketch the graph of *f*, clearly showing all the features found above.
- (e) Hence, write down the number of points of inflexion of the graph of *f*.

Let f be a function defined by $f(x) = x - \arctan x$, $x \in \mathbb{R}$.

- (a) Find f(1) and $f\left(-\sqrt{3}\right)$.
- (b) Show that f(-x) = -f(x) , for $x \in \mathbb{R}$.
- (c) Show that $x rac{\pi}{2} < f(x) + rac{\pi}{2}$, for $x \in \mathbb{R}$.

- (d) Find expressions for f'(x) and f''(x). Hence describe the behaviour of the graph of f at the origin and justify your answer.
- (e) Sketch a graph of f, showing clearly the asymptotes.
- (f) Justify that the inverse of f is defined for all $x \in \mathbb{R}$ and sketch its graph.

a. (i) Sketch the graphs of $y = \sin x$ and $y = \sin 2x$, on the same set of axes, for $0 \le x \le \frac{\pi}{2}$.	[9]
---	-----

[8]

[8]

- (ii) Find the x-coordinates of the points of intersection of the graphs in the domain $0 \le x \le \frac{\pi}{2}$.
- (iii) Find the area enclosed by the graphs.

b. Find the value of $\int_0^1 \sqrt{\frac{x}{4-x}} \mathrm{d}x$ using the substitution $x = 4\mathrm{sin}^2 heta$.

- c. The increasing function f satisfies f(0) = 0 and f(a) = b, where a > 0 and b > 0.
 - (i) By reference to a sketch, show that $\int_0^a f(x) dx = ab \int_0^b f^{-1}(x) dx$.
 - (ii) Hence find the value of $\int_0^2 \arcsin\left(\frac{x}{4}\right) dx$.

The graph of y = f(x) is shown below, where A is a local maximum point and D is a local minimum point.

a. On the axes below, sketch the graph of $y = \frac{1}{f(x)}$, clearly showing the coordinates of the images of the points A, B and D, labelling them A', [3] B', and D' respectively, and the equations of any vertical asymptotes.

b. On the axes below, sketch the graph of the derivative y = f'(x), clearly showing the coordinates of the images of the points A and D, [3] labelling them A" and D" respectively.

The graphs of y = |x + 1| and y = |x - 3| are shown below.

a. Draw the graph of y = f(x) on the blank grid below.

- b. Hence state the value of
 - (i)
 - (ii)
 - $f'(-3);\ f'(2.7);\ \int_{-3}^{-2}f(x)dx.$ (iii)

[4]